Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
Bảng giá phần mềm
Educations Software

Đại Lý - Chi Nhánh

Bản tin điện tử
 
Hỗ trợ trực tuyến
Hỗ trợ kỹ thuật
(Bùi Văn Khoa)
Trang thông tin hỗ trợ khách hàng
 
Đăng nhập/Đăng ký
Bí danh
Mật khẩu
Mã kiểm traMã kiểm tra
Lặp lại mã kiểm tra
Ghi nhớ
 
Quên mật khẩu | Đăng ký mới
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (700 bài viết)
  • Sản phẩm mới (215 bài viết)
  • Dành cho Giáo viên (549 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (156 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (127 bài viết)
  • Hỗ trợ khách hàng (486 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (183 bài viết)
  • Thông tin khuyến mại (79 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (70 bài viết)
  • Cùng học (92 bài viết)
  • Thông tin tuyển dụng (55 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (78 bài viết)
  • School@net 15 năm (154 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (124 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (363 bài viết)
  • Các vấn đề giáo dục (1210 bài viết)
  • Bài học trực tuyến (1037 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (275 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (180 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8179 bài viết)
  •  
    Thành viên có mặt
    Khách: 7
    Thành viên: 0
    Tổng cộng: 7
     
    Số người truy cập
    Hiện đã có 54191448 lượt người đến thăm trang Web của chúng tôi.

    Toán 11 - Chương III. Bài 1. Vectơ trong không gian. Sự đồng phẳng của các vectơ

    Ngày gửi bài: 07/11/2011
    Số lượt đọc: 5897

    Ở chương II, chúng ta đã xét quan hệ song song trong không gian. Trong chương này ta nghiên cứu quan hệ vuông góc giữa hai đường thẳng, giữa đường thẳng với mặt phẳng, giữa hai mặt phẳng. Kiến thức về vectơ là cơ sở để xây dựng quan hệ vuông góc trong không gian.

    Khi học chương này, học sinh cần biết vận dụng các kiến thức đã có về vectơ trong mặt phẳng để áp dụng vào không gian, đồng thời bước đầu giải quyết được một số bài toán hình học không gian có liên quan đến các yếu tố vuông góc.

    1. Vectơ trong không gian

    Khái niệm vectơ và các phép toán vectơ đã được đề cập trong chương trình hình học lớp 10. Tuy nhiên, khi đó tất cả các vectơ mà chúng ta xem xét đều nằm trên cùng một mặt phẳng.

    Ở chương II, chúng ta đã làm quen với việc nghiên cứu hình học không gian mà đối tượng của nó là các hình có thể không cùng nằm trong một mặt phẳng. Chẳng hạn, tứ diện ABCD là một hình có tính chất đó và như thế các vectơ không cùng nằm trong một mặt phẳng nào cả (h.82).


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h82.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    Trong chương này, chúng ta sẽ nói đến các vectơ trong không gian. Vectơ, các phép toán vectơ trong không gian được định nghĩa hoàn toàn giống như trong mặt phẳng, chúng cũng có các tính chất đã biết nên không nhắc lại. Sau đây, chúng ta nêu lên một số hoạt động và ví dụ nhằm mục đích ôn tập lại những kiến thức đã có về vectơ trong mặt phẳng để áp dụng vào không gian.

    1

    Cho hình hộp ABCD.A’B’C’D’ với tâm O (h.83).


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h83.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    a) Hãy chỉ ra trên hình 83 những vectơ bằng nhau khác vectơ và kiểm tra tính đúng đắn của đẳng thức

    b) Chứng minh rằng

    CHÚ Ý

    Công thức (1) gọi là quy tắc hình hộp (để tìm tổng của ba vectơ).

    2

    Cho tứ diện ABCD với trọng tâm G và các trung điểm các cạnh của nó (h.84).

    Hãy chỉ ra trên hình 84 những vectơ khác bằng nhau và kiểm tra xem đẳng thức có đúng không?


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h84.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    3

    Cho hình lăng trụ ABC.A’B’C’. Đặt (h.85).

    1) Hãy biểu thị mỗi vectơ qua các vectơ .

    2) Gọi G’ là trọng tâm tam giác A’B’C’. Biểu thị vectơ qua .


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h85.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    Ví dụ 1

    Cho tứ diện ABCD

    1. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng tỏ rằng:

    2. Chứng minh rằng điểm G là trọng tâm của tứ diện khi và chỉ khi một trong hai điều kiện sau xảy ra:

    Giải (h.86)


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h86.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    1. Sử dụng quy tắc ba điểm, ta có:

    Tương tự như trên, ta có

    2. a) Ta có

    Điểm G là trọng tâm của tứ diện ABCD khi và chỉ khi

    Điều này tương đương với

    b) G là trọng tâm của tứ diện ABCD khi và chỉ khi

    Điều này có nghĩa là với điểm P bất kì, ta có

    Hay:

    Ví dụ 2

    Cho tứ diện ABCD có AB = c, CD = c’, AC = b, BD = b’, BC = a, AD = a’.

    Tính góc giữa các vectơ .

    Giải. Ta có

    Từ đó góc xác định bởi

    2. Sự đồng phẳng của các vectơ. Điều kiện để ba vectơ đồng phẳng

    Ta biết rằng, với hai đường thẳng phân biệt cho trước trong không gian, luôn có mặt phẳng song song với hai đường thẳng đó. Nhưng nói chung, không có mặt phẳng song song với ba đường thẳng phân biệt cho trước. Nếu có mặt phẳng như vậy thì ta nói rằng ba vectơ nằm trên ba đường thẳng ấy là đồng phẳng.

    ĐỊNH NGHĨA


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h87.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    Trên hình 87, giá của ba vectơ đều song song với mặt phẳng (P) nên ba vectơ đồng phẳng.

    Nhận xét

    Từ định nghĩa trên, suy ra: Nếu ta vẽ thì ba vectơ đồng phẳng khi và chỉ khi bốn điểm O, A, B, C cùng nằm trên một mặt phẳng hay ba đường thẳng OA, OB, OC cùng nằm trong một mặt phẳng.

    Bài toán 1

    Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng ba vectơ đồng phẳng.

    4 (Để giải bài toán 1)

    Gọi P và Q lần lượt là trung điểm của AC và BD. Khi đó MPNQ là hình bình hành. Từ đó, hãy suy ra điều phải chứng minh (h.88).

    Điều kiện để ba vectơ đồng phẳng

    Từ định nghĩa ba vectơ đồng phẳng và sự khai triển một vectơ theo hai vectơ không cùng phương trong hình học phẳng, chúng ta có thể chứng minh được định lí sau (h.89).

    ĐỊNH LÍ 1


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h89.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    5

    Chứng minh rằng

    1) Nếu có và một trong ba số m, n, p khác không thì ba vectơ đồng phẳng;

    2) Nếu là ba vectơ không đồng phẳng và thì m = n = p = 0.

    Bài toán 2

    Cho tứ diện ABCD. Các điểm M và N lần lượt là trung điểm của AB và CD. Lấy các điểm P, Q lần lượt thuộc các đường thẳng AD và BC sao cho . Chứng minh rằng các điểm M, N, P, Q cùng thuộc một mặt phẳng (h.90).


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h90.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    6 (Để giải bài toán 2)

    1) Từ hệ thức hãy chứng tỏ

    Tương tự, ta cũng có

    2) Từ hai đẳng thức trên, chứng minh rằng

    Vậy các điểm M, N, P cùng thuộc một mặt phẳng.

    Định lí 1 nói đến điều kiện để có thể biểu thị một vectơ qua hai vectơ không cùng phương. Định lí dưới đây sẽ nói về biểu thị một vectơ qua ba vectơ không đồng phẳng.

    ĐỊNH LÍ 2

    Chứng minh


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h91.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    Từ điểm O, ta đặt thì không cùng thuộc một mặt phẳng.

    Từ điểm D kẻ đường thẳng song song (hoặc trùng) với đường thẳng OC, cắt mặt phẳng (OAB) tại điểm D’ (h.91).

    Khi đó

    Theo định lí 1, ta có các số m, n sao cho . Ngoài ra do cùng phương nên có số p để . Vậy .

    Giả sử còn có thì

    không đồng phẳng nên m - m’ = n - n’ = p - p’ = 0 hay m = m’, n = n’, p = p’.

    Suy ra các số m, n, p là duy nhất.

    Bài toán 3

    Cho hình hộp ABCD.A’B’C’D’. Xét các điểm M và N lần lượt thuộc các đường thẳng A’C và C’D sao cho ( k và l đều khác 1).

    Đặt:

    a) Hãy biểu thị các vectơ qua các vectơ .

    b) Xác định các số k, l để đường thẳng MN song song với đường thẳng BD’.

    Giải (h.92)


    Tải trực tiếp tệp hình học động (Nhấn chuột phải vào liên kết rồi chọn Save As hoặc Lưu Liên Kết dưới dạng):L11_ch3_h92.cg3

    Xem trực tiếp hình vẽ động trên màn hình.

    a) Từ giả thiết ta có:

    do đó:

    do đó:

    b) Vì BD’ và C’D là hai đường thẳng chéo nhau và N thuộc đường thẳng C’D nên đường thẳng MN không thể trùng với đường thẳng BD’. Vậy đường thẳng MN song song với đường thẳng BD’ khi và chỉ khi

    Do nên ta có

    Mặt khác (quy tắc hình hộp) mà là ba vectơ không đồng phẳng nên

    Vậy khi k = -3, l = -1 thì đường thẳng MN và đường thẳng BD’ song song với nhau.


    Câu hỏi và bài tập

    1. Ba vectơ có đồng phẳng không nếu một trong hai điều sau đây xảy ra?

    a) Có một vectơ trong ba vectơ đó bằng .

    b) Có hai vectơ trong ba vectơ đó cùng phương.

    2. Cho hình chóp S.ABCD.

    a) Chứng minh rằng nếu ABCD là hình bình hành thì . Điều ngược lại có đúng không?

    b) Gọi O là giao điểm của AC và BD. Chứng tỏ rằng ABCD là hình bình hành khi và chỉ khi .

    3. Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và A’B’C’, I là giao điểm của hai đường thẳng AB’ và A’B. Chứng minh rằng các đường thẳng GI và CG’ song song với nhau.

    4. Cho hình hộp ABCD.A’B’C’D’. Gọi M và N lần lượt là trung điểm của CD và DD’ ; G và G’ lần lượt là trọng tâm của các tứ diện A’D’MN và BCC’D’. Chứng minh rằng đường thẳng GG’ và mặt phẳng (ABB’A’) song song với nhau.

    5. Trong không gian cho tam giác ABC.

    a) Chứng minh rằng nếu điểm M thuộc mp(ABC) thì có ba số x, y, z mà x + y + z = 1 sao cho với mọi điểm O.

    b) Ngược lại, nếu có một điểm O trong không gian sao cho , trong đó x + y + z = 1 thì điểm M thuộc mp(ABC ).

    6. Cho hình chóp S.ABC. Lấy các điểm A’, B’, C’ lần lượt thuộc các tia SA, SB, SC sao cho SA = aSA’, SB = bSB’, SC = cSC’, trong đó a, b, c là các số thay đổi. Chứng minh rằng mặt phẳng ( A’B’C’ ) đi qua trọng tâm của tam giác ABC khi và chỉ khi a + b + c = 3.

    School@net



    Bài viết liên quan:
    Toàn bộ chương trình sách giáo khoa môn Toán, phần Hình học lớp 12 - Nâng cao đã lên mạng với tất cả các hình ảnh động kèm theo (22/11/2011)
    Toán 12 - Chương III - Bài 5. Ôn tập cuối năm (21/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 4. Ôn Tập Chương III (19/11/2011)
    Toán 12 - Chương III - Bài 3. Phương trình đường thẳng (19/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG (18/11/2011)
    Toán 12 - Chương III - Bài 1. Hệ tọa độ trong không gian. (18/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 5. ÔN TẬP CHƯƠNG II (17/11/2011)
    Toán 12 - Chương II - Bài 4. Mặt nón, hình nón và khối nón (17/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 3. MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ (16/11/2011)
    Toán 12 - Chương II - Bài 2. Khái niệm về mặt tròn xoay (15/11/2011)

    Phần mềm liên quan:

    Bài giảng Hình học 11 - GeoMath 11
    60 000 VND

    Bài giảng Hình học 12 - GeoMath 12
    60 000 VND

    Kiểm tra trí tuệ - IQ Test 2.0
    45 000 VND

     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 1407 - Nhà 17T2 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Điện thoại: (04) 62511017 - Fax: (04) 62511081
    Email: school.net@hn.vnn.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.