Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
Bảng giá phần mềm
Educations Software

Đại Lý - Chi Nhánh

Bản tin điện tử
 
Hỗ trợ trực tuyến
Hỗ trợ kỹ thuật
(Bùi Văn Khoa)
Trang thông tin hỗ trợ khách hàng
 
Đăng nhập/Đăng ký
Bí danh
Mật khẩu
Mã kiểm traMã kiểm tra
Lặp lại mã kiểm tra
Ghi nhớ
 
Quên mật khẩu | Đăng ký mới
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (700 bài viết)
  • Sản phẩm mới (215 bài viết)
  • Dành cho Giáo viên (549 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (156 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (127 bài viết)
  • Hỗ trợ khách hàng (486 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (183 bài viết)
  • Thông tin khuyến mại (79 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (70 bài viết)
  • Cùng học (92 bài viết)
  • Thông tin tuyển dụng (55 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (78 bài viết)
  • School@net 15 năm (154 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (124 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (363 bài viết)
  • Các vấn đề giáo dục (1210 bài viết)
  • Bài học trực tuyến (1037 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (275 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (180 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8179 bài viết)
  •  
    Thành viên có mặt
    Khách: 10
    Thành viên: 0
    Tổng cộng: 10
     
    Số người truy cập
    Hiện đã có 55246876 lượt người đến thăm trang Web của chúng tôi.

    Toán 12 - Chương III - Bài 5. Ôn tập cuối năm

    Ngày gửi bài: 21/11/2011
    Số lượt đọc: 6644

    I - Bài tập tự luận

    1. Cho hình lăng trụ ABC.A’B’C’ với cạnh bên không vuông góc với mặt đáy. Gọi là mặt phẳng vuông góc với các cạnh bên của hình lăng trụ và của chúng tại P, Q, R. Phép tịnh tiến theo vectơ biến tam giác PQR thành tam giác P’Q’R’.

    a) Chứng minh rằng thể tích V của hình lăng trụ đã cho bằng thể tích của hình lăng trụ PQR.P’Q’R’.

    b) Chứng minh rằng V = SPQR.AA’, trong đó SPQR là diện tích tam giác PQR.

    2. Cho tứ diện ABCD có thể tích V. Hãy tính thể tích của hình tứ diện có đỉnh là trọng tâm các mặt của tứ diện đã cho.

    3. Cho hình hộp ABCD.A’B’C’D’ có thể tích V. Hãy tính thể tích của hình tứ diện ACB’D’.

    4. Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

    5. Cho hình vuông ABCD nội tiếp đường tròn (O ; R). Gọi H là hình gồm các điểm của hình tròn (O; R) nhưng không nằm trong hình vuông. Tính thể tích hình tròn xoay sinh bởi hình H khi quay quanh đường thẳng chứa một đường chéo của hình vuông.

    6. Cho lục giác đều ABCDEF cạnh a.

    a) Tính thể tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng AD.

    b) Tính thể tích hình tròn xoay sinh bởi lục giác đó khi quay quanh đường thẳng đi qua trung điểm của các cạnh AB và DE.

    7. Cho hình trụ có bán kính R và đường cao . Gọi AB và CD là hai đường kính thay đổi của hai đường tròn đáy mà AB vuông góc với CD.

    a) Chứng minh rằng ABCD là tứ diện đều.

    b) Chứng minh rằng các đường thẳng AC, AD, BC, BD luôn tiếp xúc với một mặt trụ cố định (tức là khoảng cách giữa mỗi đường thẳng đó và trục của mặt trụ bằng bán kính mặt trụ).

    8. Trong không gian tọa độ Oxyz, cho các điểm A(1; 5; 3), B(4; 2; -5), C(5; 5; -1) và D(1; 2; 4).

    a) Chứng tỏ rằng bốn điểm A, B, C, D không đồng phẳng.

    b) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D. Xác định tâm và tính bán kính của mặt cầu đó.

    c) Viết phương trình mặt phẳng đi qua ba điểm A, B, C và tìm khoảng cách từ điểm D tới mặt phẳng đó.

    d) Viết phương trình mặt phẳng vuông góc với CD và tiếp xúc với mặt cầu (S).

    e) Tìm bán kính các đường tròn giao tuyến của mặt cầu (S) và các mặt phẳng tọa độ.

    9. Trong không gian tọa độ Oxyz, cho đường thẳng có phương trình

    a) Viết phương trình hình chiếu của trên các mặt phẳng tọa độ.

    b) Chứng minh rằng mặt phẳng x + 5y + z + 4 = 0 đi qua đường thẳng .

    c) Tính khoảng cách giữa đường thẳng và các trục tọa độ.

    d) Viết phương trình đường vuông góc chung của hai đường thẳng : x = y = z.

    e) Viết phương trình đường thẳng song song với Oz, cắt cả .

    10. Trong không gian tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(2; 0; 1) .

    a) Tìm quỹ tích các điểm M sao cho MA2 - MB2 = 2.

    b) Tìm quỹ tích các điểm N sao cho NA2 + NB2 = 3.

    c) Tìm quỹ tích các điểm cách đều hai mặt phẳng (OAB) và (Oxy).

    11. Trong không gian tọa độ Oxyz, cho đường thẳng có phương trình

    trong đó a, b, c thay đổi sao cho c2 = a2 + b2.

    a) Chứng minh đường thẳng đi qua một điểm cố định, góc giữa và Oz là không đổi.

    b) Tìm quỹ tích giao điểm của và mp(Oxy).

    12. Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB = a, BC = b, CC’ = c.

    a) Tính khoảng cách từ điểm A tới mp(A’BD).

    b) Tính khoảng cách từ điểm A’ tới đường thẳng C’D.

    c) Tính khoảng cách giữa hai đường thẳng BC’ và CD’.

    II - Câu hỏi trắc nghiệm

    1. Cho H là hình chóp tứ giác đều S.ABCD. Xét các mặt phẳng: (SAC), (SAB), (SBD), (ABC), (SOI), trong đó I là trung điểm của AB, O là tâm hình vuông ABCD. Trong các mặt phẳng đó, có bao nhiêu mặt phẳng là mặt phẳng đối xứng của H ?

    A. 1

    B. 2

    C. 3

    D. 4

    2. Gọi H là lăng trụ lục giác đều ABCDEF.A’B’C’D’E’F’. Xét các mặt phẳng: mp(AA’D), mp(ACA’), mp(ABB’), mặt phẳng trung trực của DD’, mặt phẳng trung trực của AB. Trong các mặt phẳng đó, có bao nhiêu mặt phẳng là mặt phẳng đối xứng của H ?

    A. 1

    B. 2

    C. 3

    D. 4

    3. Cho khối lăng trụ tam giác ABC.A’B’C’, M là trung điểm của cạnh AB. Trong các đẳng thức sau đây, đẳng thức nào sai ?

    A. VA’B’C’C = VMA’B’C’

    B. VABCC’ = VA’BCC’

    C. VMA’B’C’ = VA’ABC

    D. VMA’B’C’ = 1/2VAA’B’C’

    4. Cho khối lăng trụ tam giác ABC.A’B’C’. Trong các đẳng thức sau đây, đẳng thức nào sai ?

    A. VA’B’CC’ = 1/3VABC.A’B’C’

    B. VA.BB’C’C = 1/2VABC.A’B’C’

    C. VA.BCC’B’ = 2VAA’BC

    5. Cho khối chóp tứ giác S.ABCD và các điểm A’, B’, C’, D’ lần lượt nằm trên các đường thẳng SA, SB, SC, SD nhưng không trùng với S.

    Trong các mệnh đề sau đây, mệnh đề nào đúng?

    6. Trong các mệnh đề sau, mệnh đề nào đúng?

    A. Hình lăng trụ nội tiếp một mặt cầu nếu đáy của nó là đa giác nội tiếp;

    B. Hình lăng trụ nội tiếp một mặt cầu nếu tất cả các mặt của nó đều là đa giác nội tiếp;

    C. Hình lăng trụ nội tiếp một mặt cầu nếu có mặt bên vuông góc với mặt đáy;

    D. Đa diện nội tiếp một mặt cầu nếu các mặt của nó đều là đa giác nội tiếp.

    7. Trong các mệnh đề sau, mệnh đề nào đúng?

    A. Đường tròn đi qua ba điểm phân biệt nằm trên mặt cầu thì nằm hoàn toàn trên mặt cầu;

    B. Có duy nhất một mặt cầu đi qua 4 đỉnh của một hình thang cân cho trước;

    C. Hình chóp có đáy là hình thang vuông luôn luôn nội tiếp một mặt cầu;

    D. Cả ba mệnh đề trên đều sai.

    8. Cho khối trụ có bán kính và chiều cao . Thể tích của nó là

    9. Đáy của một hình chóp là hình vuông có diện tích bằng 4. Các mặt bên của nó là những tam giác đều. Diện tích toàn phần của hình chóp là

    10. Một hình nón có đường sinh bằng l và bằng đường kính đáy. Bán kính hình cầu nội tiếp hình nón là

    11. Một hình cầu có thể tích bằng 4/3, nội tiếp một hình lập phương. Thể tích của hình lập phương đó bằng

    A. 8

    B.

    C. 1

    D.

    12. Cho hình chữ nhật có hai đỉnh A(-2; 3; 0) , B(2; 3; 0) và một cạnh nằm trên Ox. Khối tròn xoay sinh bởi hình chữ nhật đó khi quay quanh trục Oy có thể tích là

    13. Cho hai vectơ . Trong các vectơ sau, vectơ nào cùng phương với ?

    14. Cho tam giác ABC có diện tích bằng 6 nằm trong mặt phẳng có phương trình 2x - 2y + z + 5 = 0. Thể tích hình chóp S.ABC với S = (1; 1; 1) bằng

    15. Mặt cầu tâm I(6; 3; -4), tiếp xúc với trục Ox có bán kính là

    A. 5

    B.

    C.

    D. 4

    16. Cho đường thẳng d có phương trình:

    Phương trình tham số nào sau đây cũng là phương trình của d ?

    17. Cho hai đường thẳng

    Khi đó:

    A. d cắt d’ ;

    B. d trùng d’ ;

    C. d và d’ chéo nhau ;

    D. d song song với d’ .

    18. Cho mặt phẳng (P) và mặt cầu (S) có phương trình

    (P): 3x + 4z + 12 = 0 ;

    (S): x2 + y2 + (z - 2)2 = 1

    Khi đó:

    A. mp(P) đi qua tâm mặt cầu (S) ;

    B. mp(P) tiếp xúc với mặt cầu (S) ;

    C. mp(P) cắt (S) theo một đường tròn ;

    D. mp(P) không cắt (S).

    19. Tọa độ hình chiếu vuông góc của điểm M(2; 0; 1) trên đường thẳng

    A. (1; 0; 2)

    B. (2; 2; 3)

    C. (0; -2; 1)

    D. (-1; 4; 0)

    20. Cho hai đường thẳng

    Khoảng cách giữa d và d’ là

    21. Cho hai đường thẳng

    Phương trình đường vuông góc chung của d và d’ là

    22. Cho mặt phẳng (P): mx + y + (n - 2)z + m + 2 = 0. Với mọi m, n, mặt phẳng (P) luôn đi qua điểm cố định có tọa độ là

    A. (1; 2; 0)

    B. (2; 1; 0)

    C. (0; 1; -2)

    D. (-1; -2; 0)

    23. Cho mặt cầu (S): x2 + y2 + z2 - 2x -4y -4z = 0. Mặt phẳng tiếp xúc với (S) tại điểm A(3; 4; 3) có phương trình:

    A. 4x + 4y - 2z - 17 = 0

    B. 2x + 2y + z - 17 = 0

    C. 2x + 4y + z - 17 = 0

    D. x + y + z - 17 = 0


    III - Một số đề kiểm tra

    ĐỀ I

    Câu 1. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng .

    a) Tính thể tích của hình chóp đã cho.

    b) Tính bán kính mặt cầu ngoại tiếp hình chóp S.ABCD.

    c) Gọi A’ và C’ lần lượt là trung điểm của hai cạnh SA và SC. Chứng minh rằng hai hình chóp A’.ABCD và C’.CBAD bằng nhau.

    Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(4; -1; 2), B(1; 2; 2) và C(1; -1; 5).

    a) Chứng minh rằng ABC là tam giác đều.

    b) Viết phương trình mp(ABC). Tính thể tích khối tứ diện giới hạn bởi mp(ABC) và các mặt phẳng tọa độ.

    c) Viết phương trình trục của đường tròn ngoại tiếp tam giác ABC.

    d) Tìm tọa độ điểm D sao cho ABCD là tứ diện đều.


    ĐỀ II

    Câu 1. Cho tứ diện đều ABCD có cạnh bằng a. Gọi B’, C’, D’ lần lượt là trung điểm của các cạnh AB, AC và AD.

    a) Chứng minh rằng sáu điểm B, C, D, B’, C’, D’ nằm trên một mặt cầu. Tính bán kính của mặt cầu đó.

    b) Tính thể tích khối chóp D.BCC’B’.

    Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(2; 0; 0 ), A’(6; 0; 0) , B(0; 3; 0), B’(0; 4; 0), C(0; 0; 4), C’(0; 0; 3).

    a) Viết phương trình mặt cầu đi qua bốn điểm A, A’, B, C. Chứng minh rằng B’ và C’ cũng nằm trên mặt cầu đó.

    b) Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.

    c) Tính khoảng cách từ điểm O tới giao tuyến của mp(ABC’) và mp(A’B’C).


    ĐỀ III

    Câu 1. Cho hình hộp ABCD.A’B’C’D’. Gọi N là điểm nằm trên cạnh AB và là mặt phẳng đi qua ba điểm D, N, B’.

    a) Mặt phẳng cắt hình hộp đã cho theo thiết diện là hình gì?

    b) Chứng minh rằng mặt phẳng phân chia khối hộp đã cho thành hai khối đa diện H1 và H2 bằng nhau.

    c) Tính tỉ số thể tích của khối đa diện H1 và thể tích của khối tứ diện AA’BD.

    Câu 2. Trong không gian tọa độ Oxyz, cho các điểm A(1; -3; -1) và B(-2; 1; 3).

    a) Chứng tỏ rằng hai điểm A và B cách đều trục Ox.

    b) Tìm điểm C nằm trên trục Oz sao cho tam giác ABC vuông tại C.

    c) Viết phương trình hình chiếu của đường thẳng AB trên mp(Oyz).

    d) Viết phương trình mặt cầu đi qua ba điểm O, A, B và có tâm nằm trên mp(Oxy).

    School@net



    Bài viết liên quan:
    Toàn bộ chương trình sách giáo khoa môn Toán, phần Hình học lớp 12 - Nâng cao đã lên mạng với tất cả các hình ảnh động kèm theo (22/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 4. Ôn Tập Chương III (19/11/2011)
    Toán 12 - Chương III - Bài 3. Phương trình đường thẳng (19/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG (18/11/2011)
    Toán 12 - Chương III - Bài 1. Hệ tọa độ trong không gian. (18/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 5. ÔN TẬP CHƯƠNG II (17/11/2011)
    Toán 12 - Chương II - Bài 4. Mặt nón, hình nón và khối nón (17/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 3. MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ (16/11/2011)
    Toán 12 - Chương II - Bài 2. Khái niệm về mặt tròn xoay (15/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 1. MẶT CẦU, KHỐI CẦU (15/11/2011)

    Phần mềm liên quan:

    Bài giảng Hình học 7 - GeoMath 7
    60 000 VND

    Bài giảng Hình học 10 - GeoMath 10
    60 000 VND

    Kiểm tra trí tuệ - IQ Test 2.0
    45 000 VND

     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 1407 - Nhà 17T2 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Điện thoại: (04) 62511017 - Fax: (04) 62511081
    Email: school.net@hn.vnn.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.